
DOCUMENT RESUME

ED 287 710 SE 048 666

AUTHOR Cuneo, Diane 0.
TITLE Young Children and Turtle Graphics Programming:

Generating and Debugging Simple Turtle Programs.
PUB DATE 86
NOTE 12p.; Paper presented at the Annual Meeting of the

American Educational Research Association (San
Francisco, CA, April 16-20, 1986). For related
documents, see ED 260 800 and SE 048 687.

PUB TYPE Reports Research/Technical (143) --
Speeches /Conference Papers (150)

EDRS PRICE MF01/PC01 Plus Postage.
DESCRIPTORS Computer Assisted Instruction; *Computer Graphics;

*Computer Science; Computer Uses in Education;
Elementary Education; * Elementary School Science;
Preschool Education; *Problem Solving; *Programing;
Programing Languages; Science Education; Science
Instruction; Sequential Learning

IDENTIFIERS *Turtle Graphics

ABSTRACT
Turtle graphics is a popular vehicle for introducing

children to computer programming. Children combine simple graphic
commands to get a display screen cursor (called a turtle) to draw
designs on the screen. The purpose of this study was to examine young
children's abilities to function in a simple computer programming
environment. Four and five-year-olds were asked to solve turtle
graphics problems requiring two or three commands for a solution.
There were two programming-type conditions. First, children were
asked to give the complete sequence of commands in advance (i.e.,
generate a program). Second, if the sequence did not work, they were
asked to determine what went wrong and modify it accordingly (i.e.,
debug their program). Results of the study indicate that young
children had difficulty in generating two- or three-command programs.
Their ability to debug their own incorrect programs was not as high
as expected. Several implications for educators are discussed. Tables
and figures are provided. (TW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

O

Co
CV

LiJ

Meeting of the American Educational Research Association

San Francisco, CA, April 198G

Young Children and Turtle Graphics Programming:

Generating and Debugging Simple Turtle Programs

Diane 0. Cun2o

University of Massachusetts, Amherst

U S OEPARTMEN r OF MC/L.:L-4
Onrce of Educational Res.:wrch and Improvement

EDUCATIONAL
CENTER I
RESOURCES

IC
INFORMATION

ER

This do,ument haS been reproduced as
r etveP from the person or organaation
on natnt

E Mn Or changeS have been made to ImprOve
reprod uCtl on etlantY

Ponta of 'new or opinionSState0 in thiSOCCU
men? do not neCeSSanly represent otfiCial
OEIRf posruon or pOhCY

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Al(CA_.1

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)"

Author's address: Department of Physics, Hasbrouck Laboratory, University of

Massachusetts, Amherst, MA 01003

2

2

Young Children and Turtle Graphics Programming:

Generating and Debugging Simple Turtle Programs

Turtle graphics is a popular vehicle for introducing children to computer

programming. Children combine simple graphics commands to get a display

screen cursor called a turtle to draw designs on the screen. Anecdotal

evidence suggests that young (i.e., prechool-aged) children are able to jumc

right into creating their own turtle designs. It is not clear, however,

whether they are actually capable of computer programming.

The existing literatur' on young children's problem-solving also offers

little clue as to what their computer programming abilities might be. An

exception is Klahr and Robinscn's (1981) Tower of Hanoi study. Klahr and

Robinson presented 4- and 5-year-olds with three-disk Tower of Hanoi problems

requiring from one to seven moves for solution. The children were asked to

plan (1., , state but not execute) the required sequence of moves. Post

4-year-olds could give correct plans for up to two-move problems, and most

5-year-olas for up to three-move problems. Since generating a computer

program demands an analogous kind of planning, these results suggest that

young children are hardly capable of computer programming. It is not clear,

however, whether the two problem-solving situations are similar enough to

oermit this analogy.

The purpose of this study was to examine young children's ability to

function in a simple computer programming environment. Four- and 5-year-olds

were asked to solve turtle graphics problems requiring two or three commands

for solution. There were two programming-type conditions. First, children

were asked to give the complete sequence of commands in advance (i.e.,

3

3

generate a program). Second, if the sequence did not work, they were asked to

figure out what went wrong and modify it accordingly (i.e., debui) their

program). Young children's attempts at such programming-type activities would

provide important preliminary information on what they can actually do in a

computer programming environment, and the kinds of things they find difficult.

Hathod

Turtle graphics environment. A highly simplified turtle graphics

environment was created for the study. There were four possible turtle

orientations, facing 0-, 90-, 180-, and 270-degrees see Figure 1), and four

legal commands, FORWARD (F), BACK (B), RIGHT (R), AHD LEFT (L). F and B moved

the turtle a fixed distance (i.e., one "turtle step") forward and back,

respectively, and R and L rotated it 90-degrees clockwise and anti-clockwise,

respectively.

Problems. Children were asked to solve simple problems that involved

getting the turtle to a goal. Set 1 consisted of eight two-command problems.

The turtle appeared on the display screen in one of four orientations (see tip

panel of Figure 2). Then an object appeared one "turtle step" above, below,

to the right of, or to the left of the turtle such that rotation and then

displacement .3uld get the turtle to the object (see bottom panel of Figure

2). Set 2 consisted of twelve two- and three-command problems (display screen

version of problems used by Gregg (1978)). A row of three objects, spaced one

"turtle step" apart, appeared on the display screen (see top panel of Figure
1

3). Then the turtle, oriented 0- or 180- degrees, appeared below one of the

objects. Finally, one of the remaining two objects was designated as the goal

object. Eight problems required rotation and then displacement of the turtle,

and four required rotation and then two displacements of the turtle (see

bottom panel of Figure 3).

4

A brief introduction preceded each problem set in order to present the

problem scenario, familiarize the children with the distance covtred by a

"turtle step," and cTionstrate alternative solutions to a problem (e.g., RF

and LB). Children were asked to solve the problems in the "fastest way," that

is, with the fewest possible commands.

Problem-solving conditions. Children solved the problems in Set 1 in

each of three conditions, followed by the problems in Set 2. For each set,

the problem-solving conditions were as follows. An immediate condition,

administered first, provided on-line feedback from the screen. Children gave

a command, the turtle executed it, and the next command was given and

executed. An incorrect command could be immediately detected, and corrected

or accommodated by the next command. The purpose of this condition was to

ensure that children understood the task, and give them practice. A planning

condition, administered second, provided no screen feedback. That is,

commands were not executed by the turtle. Children were simply asked to give

the command(s) they thought wojd solve the problem, and moved on to the next

problem. Finally, a programming condition provided delayed feedback from the

screen. This conditio^ was comparable to a real programming environment.

Commands were executed after the entire sequence was given. Children gave the

command(s) they thought would solve the problem, and the turtle executed the

given command(s). Tney were asked to modify an incorrect solution, using

information from the screen co figure out where the "bug" was. The turtle

then executed the modified solution.

Sub'ects. Thirty-two 4- and 5-year-olds (mean age 5-1) participated in

the study (29 completed the entire sequence of tasks). None of the children

had previous experience with turtle graphics or computer programming although

many had used computers to play games.

5

5

Procedure. In an initial session, children were introduced to the turtle

graphics environment. The introduction included demonstration aid explanation

of each command, with the turtle beginning in each orientation. External aids

(e.g., a cardbuard turtle, a toy turtle, and having children "play turtl'!")

were used to facilitate understanding. Each subsequent session began with a

()rid reintroduction to the turtle and commands. Children solved the problems

in Set 1, followed by those in Set 2.

Humber of sessions varied from 3 to 6, with each session lasting about 30

minutes. Children typically spent about 10 minutes after a session playing

around and drawing turtle designs.

Results

Immediate conditions. Although the immediate conditions were mainly ,.or

practice, children's performance in them provides.a context for viewing their

subsequent performance in the programming-type conditions. Performance was

quite good in the cwo immediate conditions. Children gave "fastest way"

solutions on 52Y., of the problems in Set 1, and 54% of the problems in Set 2

(cnance level was about G;;). They eventually got the turtle to its goal in

97;:. and 99% of the problems in Sets 1 and 2, respectively, indicating that

they understood the task at hand.

Manning conditions. Children's plans were classified as Correct (i.e.,

"fastest way"), Appropriate Form (e.g., RF instead of LF), Incomplete (e.g., L

or F instead of LF), or Other (e.g., FL instead of LF). As shown in Table 1,

children gave "fastest way" plans on 19% of the problems in Set 1, and 38% of

the problems in Set 2. These percentages were well below those in the

immediate conditions, indicating that children had difficulty giving a second

(or third) command without the benefit of screen effects of the previous

comwand(s). Indeed, using Klahr and Robinson's (1981) criterion of perfect

performance, none of the children could give correct plans for even

6

6

two-command problems.

For Set 1 plans, the most common error was to give only oneiof the two

needed commands. This error raises doubts about young children's ability to

give more than one turtle command in advance (i.e., generate a program). For

the later Set 2 problems, however, the most common error was to give the wrong

rotation-displacement command combination (e.g., RF instead of IS or RB). This

error, presumably due to confusion of right and left, has less serious

implications for computer programming.

ProgrammiNg conditions. Classification of children's first programs

(i.e., first-given solutions) is shown in Table 1. First programs for 68% and

60;; of the problems in Sets 1 and 2, respectively, were incorrect and, thus,

in need of debugging. Second programs (i.e., second-given solutions) are

shown in Table 2. Children were able to debug 53% and 55% of their incorrect

programs in Sets 1 and 2, respectively. Hot surprisingly, programs than were

already of appropriate form (e.g., a rotation-displacement command sequence

for two-command problems) were easiest to fix. Programs chat were incomplete

were surprisingly difficult to fix.

Conclusions

The results provide a general picture of young children's computer

programming-type abilities. Four- and 5-year-olds could not easily generate a

ttio- or three-command program. Their ability to give the correct sequence,

and at least the appropriate number and type of commands, improved in the

course of the study. But even their final abilities were not very ih-wessive.

Similarly, their ability to debug their own incorrect programs was not as high

as we might have expected, given the simplicity of the problems and the screen

feedback and practice they had received in the immediate conditions, These

young children could not easily go on to more complex turtle graphics

programming.

7

I ,

7

The implication is that educators and parents need to develop realistic

expectations and goals with regard to young children and computer programming.

Young children's activities in turtle graphics may provide them with useful

pre- programing experience and, perhaps, should be viewed and appreciated as

just that. Indeed, pre-programming activities would seem to belong in a

preschool curriculum along with pre-reading and pre-arithmetic activities.

References

Gregg, L. U. (1970). Spatial concepts, spatial names, and the development of

exocentric representations. In R. S. Siegler (Ed.,. Children's thinking:

What develops? Hillsdale, 113: Lawrence Erlbaum Associates.

Klahr, 0., 8 Robinson, H. (1981). Formal assessment of problem-solving and

planning processes in preschool children. Cognitive Psychology, 13, 113

142.

8

I

8

i

Table 1

Classification of Children's Solutions, Pans, and First Programs

Problem

Set Condition

No. of

Subjects Correct

Incorrect

Appropriate Form Incomplete Other

One Immediate 32 52%

Planning 31 19% 23% 48% 9%

Programming 30 32% 31% 31% 5%

Two Immediate 30 54%

Planning 30 38% 36% 18% 7%

Programming 29 40% 27% 17% 16%

$

9

00 90° -_180° 270°

9

Table 2

Modification of Incorrect First Programs

Problem First Second Program

Set Program Total Correct Appropriate Form Incomplete Other

Onea Appro. Form 75 Gil

Incomplete 75 20

Other 13 2

To b
Appro. Form 93 70

Incomplete GO 28

Other 55 1G
1 0

9 1 1

1G 37 2

3 4 4

12 4 7

4 23 5

12
9 18

INITIAL STATE

t

Figure 2

11

1 IL

ICITIAL STP.TE

r

GOAL STATE

II

1,

Figure 3

12

